On the Stability of Stochastic Parametrically Forced Equations with Rank One Forcing
نویسندگان
چکیده
We derive simplified formulas for analyzing the stability of stochastic parametrically forced linear systems. This extends the results in [2] where, assuming the stochastic excitation is small, the stability of such systems was computed using a weighted sum of the extended power spectral density over the eigenvalues of the unperturbed operator. In this paper, we show how to convert this to a sum over the residues of the extended power spectral density. For systems where the parametric forcing term is a rank one matrix, this leads to an enormous simplification.
منابع مشابه
On the Moment Stability of Stochastic Parametrically Forced Equations with Rank One Forcing
We derive simplified formulas for analyzing the moment stability of stochastic parametrically forced linear systems. This analysis extends the results in [3], where, assuming the stochastic excitation is small, the stability of such systems was computed using a weighted sum of the extended power spectral density over the eigenvalues of the unperturbed operator. In this paper, we show how to con...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کامل